Queensland University of Technology Skip banner Skip to content A university for the real world
QUT Home
News QUT Expert Guide Marketing and Communication Department
Search News & Archive
News
QUT Links Magazine
QUT Expert Guide
What's On
Contact us
 
News by subject
Alumni
Built Environment
Business
Caboolture
Corporate
Creative Industries
Cultural Precinct
Education
Engineering
Health
Information Technology
International
Law
Research
Science
Science and Technology



 
rss
Date: 11 February 2009 

Dangerous printer particles identified

The identity and origin of tiny, potentially hazardous particles emitted from common laser printers have been revealed by a new study at Queensland University of Technology.

Professor Lidia Morawska from QUT's International Laboratory for Air Quality and Health led the study which aimed to answer questions raised by earlier findings that almost one third of popular laser printers emitted large numbers of ultrafine particles.

These tiny particles are potentially dangerous to human health because they can penetrate deep into the lungs.

Professor Morawska said the latest study found that the ultrafine particles formed from vapours which are produced when the printed image is fused to the paper.

"In the printing process, toner is melted and when it is hot, certain compounds evaporate and those vapours then nucleate or condense in the air, forming ultrafine particles," she said.

"The material is the result of the condensation of organic compounds which originate from both the paper and hot toner."

The study compared a high-emitting printer with a low-emitting printer and found that there were two ways in which printers contributed to the formation of these particles.

"The hotter the printer gets, the higher the likelihood of these particles forming, but the rate of change of the temperature also contributes," Professor Morawska said.

"The high emitting printer operated at a lower average temperature, but had rapid changes in temperature, which resulted in more condensable vapour being emitted from the printer.

"The printer with better temperature control emitted fewer particles."

Professor Morawska said this research provided information which would help consumers better understand the risks of laser printers and would help the printer industry to design low or no emission printers.

The paper is available at: http://pubs.acs.org/doi/abs/10.1021/es802193n.

Media contact: Rachael Wilson, QUT media officer, 07 3138 1150 or rachael.wilson@qut.edu.au.
**High res image of Professor Lidia Morawska available for media use

 

Professor Lidia Morawska